
Boundary-Layer Meteorology          (2024) 190:15 
https://doi.org/10.1007/s10546-024-00858-w

RESEARCH ART ICLE

A Reinterpretation of Phenomenological Modeling
Approaches for Lagrangian Particles Settling in a Turbulent
Boundary Layer

Andrew P. Grace1 · David H. Richter1 · Andrew D. Bragg2

Received: 25 July 2023 / Accepted: 13 February 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
It has long been known that under the right circumstances, inertial particles (such as sand, dust,
pollen, or water droplets) settling through the atmospheric boundary layer can experience a
net enhancement in their average settling velocity due to their inertia. Since this enhance-
ment arises due to their interactions with the surrounding turbulence it must be modelled
at coarse scales. Models for the enhanced settling velocity (or deposition) of the dispersed
phase that find practical use in mesoscale weather models are often ad hoc or are built on
phenomenological closure assumptions, meaning that the general deposition rate of particles
is a key uncertainty in these models. Instead of taking a phenomenological approach, exact
phase-space methods can be used to model the physical mechanisms responsible for the
enhanced settling, and these individual mechanisms can be estimated or modelled to build
a more general parameterization of the enhanced settling of inertial particles. In this work,
we use direct numerical simulations (DNS) and phase-space methods as tools to evaluate
the efficacy of phenomenological modeling approaches for the enhanced settling velocity
of inertial particles for particles with varying friction Stokes numbers and settling velocity
parameters. We use the DNS data to estimate profiles of a drift–diffusion based parame-
terization of the fluid velocity sampled by the particles, which is key for determining the
settling velocity behaviour of particles with low to moderate Stokes number. We find that
by increasing the settling velocity parameter at moderate friction Stokes number, the mag-
nitude of preferential sweeping is modified, and this behaviour is explained by the drift
component of the aforementioned parameterization. These profiles indicate that that when
eddy-diffusivity-like closures are used to represent turbulent transport, empirical corrections
used in phenomenological modelsmay be potentially compensating for their incompleteness.
Finally, we discuss opportunities for reinterpreting phenomenological approaches for use in
coarse-scale weather models in terms of the exact phase-space approach.
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1 Introduction

A detailed and fundamental understanding of the processes responsible for the dispersion
of dust and sand particles (about 0.5–100 µm in size (Kok et al. 2012; Shao 2008)) in the
atmospheric boundary layer is of utmost importance for accurate modeling of their impact
on biogeochemical cycles (Ryder et al. 2018), global radiation balance (Miller et al. 2006),
air quality (Querol et al. 2019), and a host of other processes. More fundamentally, the
interactions between dust particles and turbulent air present an interesting and important
multi-scale physics and engineering problem. Dust and sand particles are emitted from the
ground through a series of complex interactions between gravity,wind stresses from synoptic-
scale events, electrostatic forces, and other dynamic forces (Kok et al. 2012). Under certain
circumstances, these particles may rise high into the atmosphere (Kok et al. 2017) and be
transported thousands of kilometers away (Shao 2008) (depending on their size). Part of
the challenge of predicting the global transport in the atmosphere is accurate prediction of
the rate at which particles of different sizes settle out of the atmosphere under the action of
gravity (through their Stokes settling velocity), and how different scales of turbulent motion
in the planetary boundary layer (PBL) either enhance or suppress this process.

It has long been known that under net settling conditions, heavy particles settling through
turbulence can experience a net enhancement in their average settling velocity, and many
studies have linked this to their inertia (Wang and Maxey 1993; Aliseda et al. 2002; Good
et al. 2014; Brandt and Coletti 2022). A particle’s inertia is quantified by its Stokes number,
which is the ratio between the particle’s relaxation timescale, and a fluid timescale. A related
parameter is the settling velocity parameter, which is the ratio of the Stokes settling velocity
to a characteristic fluid velocity. Settling velocity enhancement comes from a variety of
sources, but pertinent to the work presented here is the preferential sweeping mechanism
(Wang andMaxey 1993; Tom andBragg 2019), which says that when the turbulence is locally
homogeneous and there are no mean gradients in the turbulence properties, inertial particles
settling under the force of gravity preferentially sample the downward side of turbulent
eddies. This means that on average, the fluid velocities they sample are negative, which leads
to an enhancement of the average settling velocity above what would be predicted by the
Stokes settling velocity. It can be difficult to observe the enhanced settling velocity due to
preferential sweeping in the natural environment, but nevertheless, Nemes et al. (2017) and
Li et al. (2021) presented field observations of snowflakes falling through a neutral boundary
layer that had fall speeds much higher than their estimated Stokes settling velocity, and they
argued that the enhancement was due to preferential sweeping.

Understanding and being able to predict the magnitude of this effect as a function of
Stokes number and settling velocity parameter is of utmost importance for accurate modeling
of both the horizontal and vertical dispersion of particles and aerosols. Since the magnitude
of the interactions between the particles and turbulent eddies are not known a priori, they
must be modelled. On the one hand, in controlled numerical and laboratory experiments,
empirical expressions for the enhanced settling velocity in terms of the Stokes number,
settling parameter and Reynolds number have been proposed for homogeneous isotropic
turbulence (Rosa et al. 2016). Meanwhile, models for the enhanced settling velocity (or
deposition) of the dispersed phase that find practical use in mesoscale weather models (a list

123



Modeling Approaches for Lagrangian Particles Settling in ASL Page 3 of 31    15 

of which can be found in Kukkonen et al. (2012)) are often quite simple and ad hoc or are
built on phenomenological closure assumptions, such as representing the enhancing effects
on particle transport by turbulence through an eddy diffusivity approximation, discussed
more below. This means that the average settling rate of particles is a key uncertainty in these
models in general. Even simpler models in use may take a crude approach, which, roughly
speaking, represents the enhanced settling velocity as a sum of the Stokes settling velocity
and an additive correction based on the collection efficiencies of various land use categories
(Slinn and Slinn 1980; Slinn 1982; Zhang 2001; Emerson et al. 2020; Farmer et al. 2021).
These approaches are known as resistance-based approaches, and are discussed at length in
Seinfeld and Pandis (1998).

Instead of these ad hoc resistance approaches, others have developed relationships between
the surface flux andmean concentration profilewhich are based on the conservation equations
for particle concentration. In the limit of assuming that the diffusive effects of turbulence
on the particles are in exact balance with gravitational settling, one arrives at the so-called
“Rouse profile” (Rouse 1937; Prandtl 1952; Boudreau andHill 2020). This simple power-law
profile has been extended for non-equilibrium conditions (meaning a net constant downward
or upward flux) (Hoppel 2005; Kind 1992) and non-neutral atmospheric stability (Freire et al.
2016). The Rouse profile serves as a yardstick by which to compare high Reynolds number
laboratory experiments (Berk and Coletti 2020) and direct numerical simulations (Richter
and Chamecki 2018), but is only accurate in the limit of vanishing inertia. Corrections to
account for the effect of particle inertia in the near-wall region (the viscous sub-layer) have
been applied to the mass conserving approach. The common application is to practically
model a process known as impaction, which is the term used to refer to the rate at which
settling particles impact a canopy element based on their ability to adjust to changes in fluid
streamlines, which is a function of the particle inertia (Emerson et al. 2020). Thus the degree
to which inertia is relevant to a particle’s settling behaviour in phenomenological models is
often contained within the impaction component of the model. In order to parameterize the
effect of different land use categories on the settling behaviour (such as grasslands, forests,
and water surfaces, for example) empirical corrections and significant model calibration are
required, as the details can vary significantly depending on the land use category (Zhang
2001; Farmer et al. 2021).

As an alternative to the phenomenological approaches discussed above, exact phase-space
methods which quantify the evolution of the probability density function of an ensemble of
particles, such as that outlined in Pope (2000), can be used to explicitly represent the settling
velocity as the sumof distinctmechanismswhich can be estimated ormodelled to build amore
general parameterization of the enhanced settling of inertial particles. In a recent paper, Bragg
et al. (2021a) used this approach to identify the important mechanisms governing particle
settling in coupled direct numerical simulations of a turbulent boundary layer and Lagrangian
point particles for negative net flux (settling) conditions. They computed averaged profiles of
each of the terms, confirming that for settling conditions within the interior of the turbulent
boundary layer (what they refer to as the quasi-homogeneous region), the dominant settling
mechanisms for low and moderate Stokes number were the Stokes settling velocity and
preferential sweeping. At higher Stokes number, they additionally identified turbophoresis
as an important mechanism. Finally, they discussed the necessity of a drift–diffusion type
closure (Reeks 1992; Skartlien 2007; Bragg et al. 2012b) for modeling the fluid velocities
sampled by the settling particles, though they do not quote an exact form.

In this paper, we take inspiration from Bragg et al. (2021a) and discuss two different
approaches for modeling the settling of inertial particles through turbulent boundary layers
at different friction Stokes numbers (St+) and settling velocity parameters (Sv+). The first
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approach is based on the phase-space probability of the ensemble of particles discussed in
both Bragg et al. (2021a) and Skartlien (2007). This method is exact but unclosed; we adopt
the drift–diffusion closure discussed in Reeks (1992) to model the fluid velocities sampled by
the particle. We then use the DNS data to assist in estimating the magnitude and the overall
behaviour of the components of this closure across the quasi-homogeneous region of the
turbulent boundary layer for varying St+ and Sv+. We then consider a phenomenological
but mass-conserving approach discussed in Hoppel (2005) and Giardina and Buffa (2018).
This approach is similar to the ad hoc resistance based approaches discussed earlier. The
phenomenological approach is based on an eddy-diffusivity closure for the turbulent flux
of particles, which allows us to solve the governing differential equation for an equation
for average vertical particle velocity at a reference height. We show that while these ad
hoc approaches might provide reasonable deposition estimates, the approach they take is
fundamentally inappropriate as they are assuming a priori that the turbulent fluxes can be
modelled specifically as a diffusive process, and not one that includes a drift component. We
then discuss the implications of the different approaches for modeling the settling of inertial
particles and recommend improvements that have potential to be implemented in operational
models.

In Sect. 2 we introduce the numerical model, and the equations of motion for both the
carrier phase and the dispersed phase, and finally outline the series of Numerical Experiments
for the rest of the work. Section3 outlines the phase-space and closure assumption that will be
employed in the paper, as well as details regarding the phenomenological modeling approach
that will serve as a comparative lens by which to view the results. Section4 highlights the
results for the two Numerical Experiments described in Sect. 2, and finally Sect. 5 provides
a brief summary of the results and a discussion of the comparison between the two modeling
approaches.

2 Model Setup

2.1 Carrier Phase

In thiswork,we use theNCARTurbulencewithLagrangian ParticlesModel (NTLP) tomodel
one-way coupled inertial particles settling through a turbulent boundary layer, which has been
used for numerous particle-laden turbulence studies (Richter and Chamecki 2018;Wang et al.
2019; Gao et al. 2023). For the carrier phase, we use direct numerical simulations (DNS)
to solve the three dimensional incompressible constant density Navier-Stokes equations in a
turbulent open channel flow setup:

Du
Dt

= − 1

ρa
∇ p + ν∇2u − 1

ρa

d P

dx
x̂, (1)

∇ · u = 0. (2)

A schematic of the setup is presented in Fig. 1. In the above equations, D
Dt represents the

material derivative,u represents the three dimensional flowvelocity, p represents the turbulent
pressure field, ρa is the air density, and ν is the kinematic viscosity. The flow is one-way
coupled, meaning that the flow does not feel the effects of the dispersed phase.

At the lower boundary, a no-slip boundary condition is enforced, while at the upper
boundary, a no-stress boundary condition is enforced. The domain is periodic in the x and
y directions. The background state of the carrier phase is established by accelerating the
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flow with an imposed pressure gradient, −dP/dx > 0 (note that x̂ is the unit vector in
the streamwise direction) and allowing the flow to become turbulent. The magnitude of the
pressure gradient allows us to define a friction velocity uτ = √

τw/ρa , where τw is the stress
at the lower boundary. Using the friction velocity, the height of the domain, H , and viscosity
of the carrier phase, we can define a friction Reynolds number of Reτ = uτ H

ν
. Friction

Reynolds numbers for each simulation presented in this work can be found in Tables 1 and
2.

2.2 Dispersed Phase

For each particle (the dispersed phase), we apply the point-particle approximation and solve
the conservation of momentum for a rigid spherical particle subjected to linear hydrodynamic
drag and the gravitational force:

dv p

dt
= 1

τp

(
up − v p

) − g, (3)

dx p

dt
= v p. (4)

Here, v p represents the three dimensional velocity vector of each particle, x p is the location
of each particle, g is the gravitational acceleration (which only affects accelerations in the
z direction), up is the flow velocity evaluated at the location of the particle, and τp is the
relaxation timescale of the particle, defined as:

τp = ρpd2p
18ρaν

, (5)

where ρp is the particle density and dp is the particle diameter.
Once the system is at equilibrium, a vertically constantmass flux ismaintained by injecting

Lagrangian particles at the upper boundary of the domain with a downward vertical velocity
equal to their Stokes settling velocity (τpg) at a random horizontal location. Particles are
removed from the domain once they contact the bottom boundary, ensuring that a new particle
is re-injected after one is removed thereby maintaining a constant particle number. Particles
are also allowed to rebound elastically from the upper boundary, though this happens rarely.

Using the friction velocity and the kinematic viscosity of the carrier phase, we can non-
dimensionalize the particle diameter, particle relaxation timescale, and the Stokes settling
velocity;

d+ = dpuτ

ν
, St+ = τpu2τ

ν
, Sv+ = τpg

uτ

. (6)

For the rest of this study, the normalized particle diameter (which can also be interpreted as a
particle Reynolds number) is held fixed at d+ = 0.236. St+ is a viscous Stokes number and
quantifies the inertia of the particle. Sv+ is the settling velocity parameter, which with this
definition is directly related to the Rouse number from Rouse-Prandtl theory (Rouse 1937;
Prandtl 1952). Finally, we will also refer to the integral Stokes number St = τp/τL , where τL
is the Lagrangian integral timescale (also known as the Lagrangian timescale of turbulence).
For a turbulent boundary layer, the Lagrangian integral timescale increases with height as
turbulent motions higher in the boundary layer are highly correlated with themselves for
longer. More information on the computation of this parameter can be found in Sect. 3.1.
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Fig. 1 The domain is a rectangular channel of height H , streamwise length 2πH and spanwise width πH .
The carrier phase is subjected to a constant pressure gradient in the streamwise direction, and the boundary
conditions enforced at the top and bottomboundaries are no-stress and no-slip respectively,while the horizontal
boundary conditions are periodic. Particles are injected at the upper boundary at a random horizontal location
with an initial velocity equal to τpg and removed when they contact the bottom boundary. They are allowed
to rebound elastically off the upper boundary

2.3 Numerical Experimental Setup

In this manuscript, we take two Numerical Experimental approaches. The first is to vary
St+ and Sv+ independently, and parameter values for these cases can be found in Table 1.
This has been done in several studies focusing on the dominant mechanisms responsible for
inertial particle settling in turbulent boundary layers (Bragg et al. 2021a, b) and homogeneous
isotropic turbulence (Wang and Maxey 1993; Rosa et al. 2016). Practically speaking, to
choose St+, we vary the particle density, ρp , whereas to choose Sv+, we vary the magnitude
of the gravitational acceleration, g. Thus, in addition to the relaxation timescale τp , there is
a second timescale associated with Sv+ that is proportional to τs = √

�g−1, where � is some
length scale.

The second experimental approach we take is to couple St+ and Sv+ though a parameter
we denote as �. When studying particle deposition processes in geophysical contexts (i.e.
deposition over the ocean, glaciers, tundras, forest canopies, etc.), g is not a free parameter,
and Sv+ and St+ are not independent but are instead linked through characteristics of the
turbulent flow (i.e. a known ν, uτ , and g). Thus a particle’s inertia and its settling velocity are
physically coupled, and can be written: Sv+ = �St+, where � = νg/u3τ . In order to make a
comparison between our work and pre-existing work on the deposition of inertial particles,
we include several cases where St+ and Sv+ are not varied independently. Parameter values
for these cases are shown in Table 2.

The cases in Table 1 were chosen to have Reτ = 630, while the cases in Table 2 have
Reτ = 315, which is the same Reτ as the simulations presented in Bragg et al. (2021a). It is
well known that a there is a significant portion of the flow at both these Reynolds numbers
that exhibit the traditional logarithmic behaviour in the quasi-homogeneous layer (Kantha
and Clayson 2000; Bragg et al. 2021a), so we do not expect any significant Reynolds number
dependence between the two sets of cases.

3 Models of Particle Deposition

In this section, we will highlight some of the main details of the two modeling approaches
for the deposition of inertial particles in a turbulent boundary layer, with specific interest in
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Table 1 The above table
highlights the experiments
discussed in Sect. 3.1

Reτ Sv+ St+ � Nx × Ny × Nz

630 0.025 0.1 0.25 256 × 256 × 256

630 0.025 10 0.0025 256 × 256 × 256

630 0.025 100 0.00025 256 × 256 × 256

630 0.1 0.1 1 256 × 256 × 256

630 0.1 10 0.01 256 × 256 × 256

630 0.1 100 0.001 256 × 256 × 256

630 0.25 0.1 2.5 256 × 256 × 256

630 0.25 10 0.025 256 × 256 × 256

630 0.25 100 0.0025 256 × 256 × 256

Wewill refer to this set of simulations as “Numerical Experiment 1". Reτ
is the friction Reynolds number, Sv+ is the settling velocity parameter in
terms of viscous units, St+ is the Stokes number in terms of viscous units,
� is the ratio of Sv+ and St+, and Nx × Ny × Nz are the number of grid
points in the streamwise, spanwise, and vertical directions respectively.
For this experiment, St+ and Sv+ are independently varied

Table 2 The above table
highlights the experiments
discussed 3.3

Reτ Sv+ St+ � Nx × Ny × Nz

315 0.00025 0.1 0.0025 128 × 128 × 128

315 0.0025 1 0.0025 128 × 128 × 128

315 0.025 10 0.0025 128 × 128 × 128

315 0.25 100 0.0025 128 × 128 × 128

315 0.0001 0.1 0.001 128 × 128 × 128

315 0.001 1 0.001 128 × 128 × 128

315 0.01 10 0.001 128 × 128 × 128

315 0.1 100 0.001 128 × 128 × 128

We will refer to this set of simulations as “Numerical Experiment 2".
The Parameters take the same definitions as those discussed in Table 1.
Note that in these cases St+ and Sv+ are coupled, meaning that � is
held constant for each subset of cases

the dominant behaviour in the log layer. This layer is often taken to represent to lowest 100m
of the atmospheric boundary layer, and its characteristics are instrumental in determining
the dominant processes which control inertial particle settling. The first approach begins
from the phase-space equation of the joint probability density function of the particles and
will be the main approach we will discuss. This approach has the benefit of introducing no
additional approximations other than the ones already found in the equations describing the
motion of the dispersed and carrier phases (Bragg et al. 2021a). The second model is based
off of a common eddy diffusivity approximation for the turbulent flux of particles found in
the dry deposition literature (Hoppel 2002, 2005; Giardina and Buffa 2018; Farmer et al.
2021). This method has found practical and operational use but relies on a phenomenological
closure scheme necessarily requiring empirical corrections. It is important to note that these
methods take different approaches to estimate the same quantity; the average vertical particle
velocity controlling the vertical flux.

123



   15 Page 8 of 31 A. P. Grace et al.

In the following sections, we will show both the phase-space model and the phenomeno-
logical closure models, omitting some details for brevity and referring to external literature
when reasonable.

3.1 Phase-Space Approach

The overall goal of this section is to highlight the steps in the derivation of a statistical
model that predicts the vertical settling velocity taking into account the effects of particle
inertia, gravity, and turbulence inhomogeneity. First, we begin by defining the joint PDF in
position-velocity phase-space, P , as:

P = 〈δ(x p − x)δ(v p − v)〉, (7)

where x p and v p are the time-dependent particle position and velocity relative to the origin,
while x and v are the time-independent position and velocity coordinates of the phase-space
in which the particle motion is being described. Here, δ(·) is the Dirac delta function and 〈·〉
denotes an ensemble average over all realizations of the system. Taking a time derivative of
P , we can form an evolution equation of the phase-space probability density for the particles:

∂P
∂t

+ ∇x · (〈v〉x,vP) + ∇v · (〈v̇〉x,vP) = 0, (8)

where v̇ is the time derivative of the velocity, and 〈·〉x,v denotes an ensemble average con-
ditioned on x p(t) = x, v p(t) = v. The operators ∇x and ∇v represent derivatives with
respect position and velocity respectively. To obtain a governing equation for the number
concentration of the particles, we can integrate the above equation over all velocities:

∂


∂t
+ ∇x · (〈v p〉x


) = 0, (9)

where the particle number concentration is defined by:


(x, t) =
∫

Pdv, (10)

and the particle mean momentum conditioned on x p(t) = x is defined by:


〈v p〉x =
∫

vPdv. (11)

Equations (10) and (11) are consequences of the sifting property of the Dirac delta function.
Thus, at steady state, the governing equation for the number concentration is:

∇x · (

〈v p〉x

) = 0. (12)

By assuming a horizontally periodic domain, as we do in the simulations, the above equation
simplifies to:

∂

∂z

(

〈wp〉z

) = 0, (13)

where 〈wp〉z is the average vertical component of the particle velocity conditioned on z p(t) =
z. Thus, we can compute the total vertical flux as the product of the number concentration
and the average particle setting velocity as:


〈wp〉z = F, (14)
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where F is the constant vertical number flux of the inertial particles, thereby giving us an
algebraic relationship between the averaged vertical particle velocity, the total flux, and the
horizontally averaged number concentration profile. Note that in practice, for the statistically
stationary, horizontally homogeneous system we are considering, the conditional averages
〈·〉z can be evaluated by spatial averaging over the homogeneous directions, as well as aver-
aging in time.

At this point, we have not yet introduced a model for the average settling velocity, 〈wp〉z ,
in terms flow and particle properties. To do so, we form an evolution equation for the first
moment of the joint PDF given by (11). This is done rigorously in previous work for particle
momentum equations that contain hydrodynamic drag and gravity (see Skartlien 2007, Bragg
et al. 2021a), so the exact algebraic details will be omitted here, and the result for a statistically
stationary, horizontally homogeneous flow is:


〈wp〉z = 
〈u p〉z − 
vg − τp

∂

∂z

(
1

2
〈wp〉2z

)
− τp

∂

∂z

S, (15)

where 〈u p〉z represents the average vertical fluid velocities sampled by particles at height
z p(t) = z, vg = τpg is the Stokes settling velocity, and S represents the variance of the
vertical particle velocity for particles at height z p(t) = z. It is important to note that there
are no additional approximations made in the derivation equation (15).

The above equation decomposes the mean particle momentum, 
〈wp〉z , into contributions
from various mechanisms, and the mechanisms contained in (15) are a consequence of the
particle equations of motion, (3) and (4). Of interest in this work are the first and second terms
on the right hand side (15): the contribution to the vertical flux associated with the average
vertical fluid velocity sampled by the particles, and the Stokes settling velocity respectively,
as it is expected that these terms dominate the vertical settling velocity sufficiently far away
from boundaries.

The other terms, while important in certain cases, are not the main focus of this work, but
will be touched on briefly here. The third term on the right hand side arises from the average
wall normal convective acceleration of the particles, but was shown by Bragg et al. (2021a)
to be negligible in the settling regime this work is concerned with. Finally, the fourth term on
the right hand side is actually the sum of the contributions from two separate mechanisms.
They are a diffusive flux arising from the partial decoupling of particle and fluid velocities
and the turbophoretic drift velocity arising from vertical variation in the turbulence intensity.
The magnitudes of these terms in a turbulent boundary layer are discussed at length in Bragg
et al. (2021a). These terms are grouped together for notational simplicity as they are not the
main focus of the paper.

As mentioned previously, the primary concern of this work is related to the estimate of
the average settling velocity in the logarithmic region of a turbulent boundary layer (i.e.
z+ > 100). In this layer, the gradients of mean properties are relatively weak, so to leading
order, we expect that for particles with low to moderate inertia, the dominant contribution
to the vertical flux is associated with the fluid velocities sampled by the particles. However,
for St → 0 (where St is a Stokes number based on an integral scale of the flow), we expect
particles to exactly follow fluid streamlines, so particles become passive tracers. Likewise,
in the limit of St → ∞, the particle trajectories are no longer correlated with the flow. Thus,
in these limits and particles uniformly sample flow velocities.

Since 〈u p〉z depends on both flow properties and particle properties, it is not known a
priori, so it must be estimated. Bragg et al. (2012a) discusses several models in detail and
their underlying assumptions. For this work, we use the following closure approximation for
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the fluid velocity sampled by the particle (Reeks 1992):


〈u p〉z = −τp
∂

∂z
(λ
) − τpγ 
 (16)

where in the limit of a steady andhorizontally homogeneousflowγ (z) andλ(z) (the functional
dependence is suppressed in (16)) are functions that depend on the two-point, two-time
correlations of the fluid velocity along particle trajectories:

τpλ = 〈
zu p(z, t)〉, (17)

τpγ = −〈
z
∂u p
∂z (z, t)〉, (18)

where the accumulated vertical displacement due to the fluid velocities sampled by the fluid
over its path from a time t1 to the measurement time t is written as:


z =
∫ t

t1
u p(z, t; s) 1

τp

(
1 − e(s−t)/τp

)
ds. (19)

Equation (17) is interpreted as the correlation between changes in the vertical position of the
particles and the velocities they sample along their trajectories, whereas (18) is the correlation
between changes in the vertical position of the particles and the local fluid velocity gradients
sampled along the particle trajectory. Bragg et al. (2012a) discusses how the different model-
ing approaches all have the form of (16) but differ in the details regarding how γ (z) and λ(z)
are defined. These differences, while of interest from the perspective of mathematical rigor,
are not important for the present study. As we will show in Sect. 4, γ plays an important role
in balancing the gravitational accelerations (Skartlien 2007).

The utility of (16) as a representation of the average sampled velocities is that it effec-
tively replaces the average fluid velocity sampled by the particle as a sum of two terms,
one proportional to the concentration gradient (the second term on the right hand side), as
is usual in phenomenological turbulence models, and a drift term that is proportional to the
concentration itself, discussed below. This representation is useful in the limit of homoge-
neous turbulence in the absence of net particle sources or sinks and when the particles have
been in the flow for long enough to reach a statistical equilibrium. In this case, the average
particle concentration gradients (and diffusivity gradients) are necessarily zero, and only the
drift term, γ , survives. This is because in such a flow, there would be no effect to break the
translational symmetry of the system. In a boundary layer, the boundary itself breaks the
translational symmetry, and so even in the quasi-homogeneous region of a boundary layer,
the concentration gradient will not be identically zero. It can however be small because the
flow is locally homogeneous, meaning that the translational symmetry breaking is coming
from the far-field effect of the boundaries, not the near-field effect of local gradients in the
flow. As discussed in Bragg et al. (2021a), this drift term captures the preferential sweeping
mechanism (Maxey 1987; Wang and Stock 1993) that generates enhanced particle settling
speeds even in homogeneous, isotropic turbulence, as observed in numerous studies such as
Rosa et al. (2016) and Good et al. (2014). By comparison, a model that tries to represent

〈u p〉z using only an eddy diffusivity closure (i.e. no drift term), such as that described in the
next section, would never be able to represent the enhanced particle settling in the absence
of gradients of the particle concentration, since the underlying assumption is that turbulent
transport is driven by mean gradients. The closure presented in (16) attempts to capture such
enhancement in this limit.

Justification for the above closure can be made based on several technical considerations.
The underlying assumption is that the fluid velocities sampled by the particles form a random
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process that is correlated in time. Generally speaking, for a non-Gaussian process, the statis-
tics of the process are described by its infinite number of cumulants. This means that in the
limit of a non-Gaussian process, the right hand side of Eq. (16) would have infinitely many
terms, each corresponding to cumulants of different order (e.g. see the discussion in Reeks
1991). While the series may be asymptotic, computing all of the important contributions is
not easy in practice, and the number of terms that should be retained in the series is not known
a-priori. However, if the fluid velocities sampled by the particles form a Gaussian process, all
cumulants are identically zero except those of second order, leaving behind only the terms
written in (16) (Reeks 1991), thereby incurring no additional error. We will discuss this more
in Sect. 4.

Note that in (16), the coefficient λ(z) appears inside the derivative, so broadly speaking,
(16) can be interpreted as a generalized eddy-diffusivity closure with an explicit drift compo-
nent. Upon expanding the terms in the derivative, it becomes clear that we are representing
the average sampled velocities as the sum of an eddy-diffusivity termwith diffusivity τpλ(z),
and a drift term:


〈u p〉z = −τpλ
∂


∂z︸ ︷︷ ︸
Diffusive term

− τp

(
γ + ∂λ

∂z

)



︸ ︷︷ ︸
Drift term

, (20)

As a brief summary, the equation which predicts the total enhanced settling velocity 〈wp〉z
(or alternatively the total vertical flux whenmultiplied by 
) is rewritten below in terms of the
number concentration and its vertical gradient. To arrive at this equation, the decomposition
of the sampled velocities, (20), was substituted into and (15), which gives the vertical number
flux (
〈wp〉z) in terms of an advection–diffusion equation where the diffusivities and the drift
coefficients are functions of λ, τp , S, and vg:


〈wp〉z = −( τpλ︸︷︷︸
(1)

+τpS)
∂


∂z
− vg

Total correction
︷ ︸︸ ︷⎛

⎜⎜⎜
⎝
1 + τpγ

vg
+ τp

vg

∂λ

∂z
︸ ︷︷ ︸

(2)

+τp

vg

∂S

∂z

⎞

⎟⎟⎟
⎠


. (21)

We can see that writing the equation for the vertical flux in this way highlights the fact that
the drift coefficient, γ , gradients of the variable diffusivity λ, and vertical particle velocity
variance S, act as a correction to the Stokes settling velocity. Thus, the problem of modeling
the vertical flux, 
〈wp〉z , now comes down to computing 
, as well as the statistical correla-
tions S, λ(z), and γ (z). For the work in this manuscript, we are concerned with only the λ

and γ terms, since we will show that in several cases S∂z
 is roughly balanced by 
∂z S in
the interior of the computational domain.

3.2 Estimating � and �

Our approach is to use the sampled velocities and concentration fields computed by the direct
numerical simulations paired with a simple model for the diffusivity, λ, in order to compute
a residual. We then argue that due to the statistical behaviour of the sampled velocities
(discussed in the next section), the residual of the computed sampled velocities and the
diffusive term is meaningful and corresponds to an added drift component, γ , that occurs
because of preferential sweeping and turbulence inhomogeneity.
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The simplemodelwewill use forλ is given in Skartlien (2007), and arises by assuming that
the turbulence is approximately locally homogeneous (Skartlien 2007; Zhang et al. 2023).
Using this formulation, the diffusivity is computed as:

τpλ = 〈w2〉
(

τ 2L

τp

)
1

1 + τL
τp

, (22)

where 〈w2〉 is themean squared vertical velocity of theflowand τL is theLagrangian timescale
of the turbulence (the time overwhich turbulentmotions are correlated). There are corrections
to this approach that include the influence of mean shear (see Skartlien 2007 for an example
of a mean shear correction in homogeneous turbulence), but these terms can be ignored
when considering horizontally homogeneous systems such as a turbulent boundary layer. To
estimate τL , we use the model for an open channel turbulent boundary layer presented in
Oesterlé and Zaichik (2004), which is:

τL = −κz

uτ

〈uw〉
〈w2〉 . (23)

Both 〈uw〉 and 〈w2〉 can be estimated by appealing to standard wall models such as those
presented in Smits et al. (2011), Kunkel and Marusic (2006), Marusic et al. (1997), but in
our work, these qunatities are instead computed from the DNS data. For a simpler empirical
fit to the data, one could alternatively use the model presented in Sikovsky (2019). It is also
important to note that the definition of τL is dependent only on fluid properties, so in the one-
way coupled limit, τL is not a function of the Stokes number or the settling velocity parameter.
Thus, any effect on the particle transport by gravity is captured in the drift coefficient γ .

Strictly speaking, the correlation timescale over the Lagrangian particle trajectory, τLp ,
which depends on height, the particle’s Stokes number, and the settling velocity parameter,
naturally occurs in the definition of λ. Commonmodels for τLp take inertia and the Stokes set-
tling velocity into account independently, which are competing mechanisms in some regimes
(Good et al. 2014). Berk and Coletti (2021) describes a model for τLp that takes the particle
Stokes settling into account, and is based on the crossing trajectories mechanism (Csanady
1963). Using their model, it can be shown that in the limit of a small Stokes settling velocity
compared to the vertical root-mean-square velocity, the correlation time along the particle
trajectory is identical to the Lagrangian correlation timescale at leading order with a correc-
tion proportional to (Sv+)2. In the current work, the Stokes settling velocities are roughly an
order of magnitude smaller than the root-mean-square velocity, meaning that τLp is within
1% of τL . Thus, we approximate τLp using τL for the purposes of computing λ.

Alternatively, Wang and Stock (1993) derive an empirical model for yet a different cor-
relation timescale as a function of only particle inertia. Their model relies on the notion that
at vanishing inertia, the correlation time along the particle trajectory is identically τL , while
in the limit of large inertia, the timescale is the Eulerian integral timescale. Oesterlé and
Zaichik (2004) comment that for an open channel turbulent boundary layer, the ratio of the
Lagrangian and Eulerian integral timescales is roughly 0.8 at the channel centre, indicating
that these timescales are roughly equivalent. Since the variation of the correlation timescale
due to inertia does not vary significantly, we choose to use τL in (23). Furthermore, Bragg
et al. (2012b) discusses the implications and associated errors by using τL instead of τLp
when modeling λ and γ in a synthetic boundary layer flow. They note that in spite of the
errors associated with assuming τLp ≈ τL , estimates of γ and λ relative to equivalent particle
tracking experiments are still better than thosemade assuming a passive scalar approximation
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(which is equivalent to ignoring the drift term), and the magnitudes of those errors tend to
decrease in the interior of their domain.

Finally, with an estimate for the diffusivity, λ, we can compute the residual between 〈u p〉z
and the diffusive term, which will be our estimate for the drift coefficient γ :

τpγ = −τp




∂

∂z
λ
 − 〈u p〉z . (24)

It should be noted that different expressions for γ exist, but they are written in terms of
statistical correlations which can be hard to compute in practice (Bragg et al. 2012a; Reeks
2021). To our knowledge, nomodel for γ exists that can bewritten in terms of easily computed
quantities in a turbulent boundary layer, as there is for λ.

3.3 Phenomenological Eddy-Diffusivity Approach

In large scale weather prediction models, as well as regional and global climate models, it
is not feasible to represent the astronomical number of individual aerosols and particles in a
Lagrangian frame of reference due to computational restrictions. Through there are hybrid
methods to track Lagrangian parcels of air such as NOAA’s HYSPLIT model, particles are
often instead modelled as continua in an Eulerian framework and often represent a broad size
class of particles, such as those less than 10 µm (called PM10). This is an approach known
as a bulk scheme (Jenkins et al. 2022). There are several other varieties such as sectional and
modal schemes, and more information about these and their usage can be found in Kukkonen
et al. (2012).

In these kinds of Eulerian frameworks, the concentration of various species follows an
advection–diffusion equation according to mass conservation. In the following section, we
provide the mathematical details for an interpretation of the enhanced vertical velocity by
turbulence; one that makes several phenomenological assumptions about the impact of the
turbulence. In the limit of horizontal homogeneity and stationarity,mass concentration obeys:

∂

∂z

(
−K (z)

∂C

∂z
− vgC

)
= 0, (25)

where the first term in the brackets comes from assuming that the turbulent flux of the
tracer can represented by an eddy diffusivity closure, and the second term represents the flux
associated with the Stokes settling velocity. Integrating this equation with respect to height,
we arrive at the following:

− K (z)
∂C

∂z
− vgC = F, (26)

where F represents the net mass flux which is constant with height.
The equation can be solved to reveal:

F + vgC(z) = (
F + vgC0

)
e−vg R, (27)

where C0 is a reference concentration at a height δ0, and R is interpreted as a resistance to
transport:

R =
∫ z

δ

dz′

K (z′)
, (28)

which has dimensions of time over length. As an example, to recover the familiar Rouse
profile (Rouse 1937), the turbulent flux is assumed to exactly balance the flux due to Stokes
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settling, implying F = 0, and the tracer is assumed to respond instantaneously to the eddy
velocities (i.e. in the limit of vanishing inertia). This allows us to use the familiar log-layer
assumption for the eddy diffusivity K (z) = κuτ z (assuming a turbulent Schmidt number of
one), where κ is the Von Karman constant.

For net deposition conditions, F < 0 but is constant with height. Understanding that we
can write F = −vd(z)C(z), where vd is known as the deposition velocity at height z, we
recover:

vd =
vg

(
1 − C0

C(z)e
−vg R

)

1 − e−vg R
. (29)

Note that vd and 〈wp〉z actually correspond to the same quantity; the average vertical velocity
of the particles. However, different notation is intentionally chosen so as to differentiate
between the phenomenological model for the the average vertical velocity of the particles,
which we call vd , and the phase space model for this quantity, which we denote by 〈wp〉z .

A consequential assumption of the above model is that the turbulent flux of particles is
represented by the eddy-diffusivity closure:

〈cw〉 ≈ −K (z)
∂C

∂z
, (30)

where c is the fluctuating particle concentration. From the discussion in the previous section,
we know that the flux of particles by the sampled turbulent velocities should actually be
governed by the sum of a drift term proportional to the concentration, as well as a term
proportional to gradient of the concentration (for low and moderate Stokes number). Thus,
the closure shown in (30) is a phenomenological assumption.

Another assumption comes from the representation of the diffusivity K (z) itself, and by
extension, R. R is typically parameterized in terms of how different mechanisms in the lower
atmosphere affect the collection efficiency of inertial particles (Emerson et al. 2020). These
collection efficiencies are functions of the land use category in question. Several examples
include forest canopies, deserts, tundras, open water, and fields (Farmer et al. 2021). The
primary purpose of this paper is not to modify existing parameterizations of the resistance,
but to comment on how a phenomenological model compares to that of a first principles
model. To that end, we use a form of the resistance which includes only the effects of
turbulence and inertia. In its simplest form, we write the normalized resistance as a sum
of the aerodynamic resistance and what is known as the surface resistance (Zhang 2001)
(ignoring Brownian diffusion and interception, more on this below):

uτ R = uτ Ra + uτ

(
St+

α + St+
)−β

, (31)

where Ra is known as the aerodynamic resistance and takes the form:

Ra = 1

κuτ

log

(
z

δ0

)
, (32)

where α and β are positive constants that depend on the land use category (Zhang 2001),
δ0 is taken to be the maximum height of the buffer layer, and z is the height at which the
deposition velocity is to be calculated. In this simplified model, the second term on the right
hand side of (31) parameterizes the impact of inertia on the resistance. It is important to
note that in operational models, there are other terms that should be included in (31). For
example, it is known that Brownian diffusion affects the deposition of particles of various
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sizes (Seinfeld and Pandis 1998; Emerson et al. 2020) for land use types without collectors
(such as leaves, trees, grass). However, deposition enhancement by Brownian diffusion is
only significant for particles much smaller than 0.1 µm, which translates to St+ < 10−4

for our DNS so it is ignored for simplicity. Furthermore, for surfaces which have collectors,
their impact on the deposition must be taken into account in operational models, and this is
done through a process known as interception. It turns out that the contribution to the total
deposition velocity by interception is much smaller in magnitude than both the contribution
by impaction and by the Stokes settling velocity anyways (Farmer et al. 2021), and is therefore
ignored in (31). Thus, the simplest model to which we can compare DNS results to is simply
to include a model for impaction (i.e. the second term on the right hand side of (31)). In the
limit of St+ → 0, the second term above takes a form proportional to (St+)−β indicating
that R → ∞. In this limit, the model shown in (29) says that vd → vg which is what is
expected in the limit of small St+. In the limit of St+ → ∞, the overall resistance at a
height z approaches a constant value. According to (29), since vg is coupled to St+ through
the constancy of g, this implies that again vd → vg , which is the correct relationship in the
ballistic limit.

Note that (29) is implicitly a function of the local concentration. In order to estimate the
deposition velocity from (33), we will assume that C(z) 
 C0 (i.e. we are assuming that the
second term in the numerator of (29) is negligible compared to unity):

vd = vg

1 − e−vg R
. (33)

This is not strictly necessary, but as C0/C(z) approaches zero, this implies that the concen-
tration at the measuring height z is much larger than the reference concentration, the second
term in the numerator of (29) becomes small compared to unity. Mathematically speaking,
this limit corresponds to the maximum enhancement predicted by the phenomenological
model. On the other hand, as C(z) → C0, the implication is that the concentration at a
measurement height z is nearly identical to the reference concentration. If this is the case
everywhere across the turbulent boundary layer, then there is no vertical variation in the
concentration profile, and mathematically, vd tends back to vg , the Stokes settling velocity.
This result is consistent within the context of this model, as the gradient-diffusion closure
implicitly assumes that all turbulent transport must be a consequence of gradients of themean
concentration. Of course this is certainly not true of real turbulent flows, e.g., homogeneous
isotropic turbulence, where enhancement is seen when the mean concentration is constant
(Maxey 1987; Wang and Maxey 1993).

As a final point, in this work, we will use “settling velocity” and “deposition velocity”
interchangeably, but in an effort to discriminate between the two approaches discussed in
the following results, we will use 〈wp〉z when referring to the settling velocity computed
from the DNS and when referring to the phase-space approach, and we will use vd when
discussing the deposition velocity associated with the phenomenological modeling approach.
Furthermore, since the particles do not change their radius over the course of the simulation,
the number concentration, denoted by 
, is linearly related to themass concentration, denoted
by C . Therefore, the number flux is also linearly related to the mass flux.

In summary, we estimate the settling velocity enhancement of inertial particles by turbu-
lence using two different methods. The first is based on an evolution equation for the particle
phase-space PDF from which we can derive an exact equation predicting the average particle
settling velocity. This equation includes two unknown terms, and we place our focus on
estimating one of them; the average sampled turbulent velocities. We expect this term to be
the main contributor to the enhanced settling velocities in interior of a turbulent boundary
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layer. Under the assumption that the turbulent velocities sampled along a particle trajectory
form a Gaussian random process, we can write the average sampled velocities as a sum of a
diffusion term and drift term. By assuming low to moderate St+ and low vg/wrms and that
the turbulence is locally homogeneous, we can use a closed form expression for the diffusion
term in conjunction with DNS data to estimate the relative importance of the drift term.

Alternatively, the second model we consider is based on a phenomenological closure
assumption which parameterizes the turbulent transport as a diffusive process only. This
model makes use of a turbulent eddy diffusivity which is parameterized in terms of empirical
models of the aerodynamic and inertial resistance, calibrated to observations over different
land use categories.

4 Results

4.1 Settling velocity enhancement for Numerical Experiment 1

We will begin the analysis and comparison by briefly highlighting the main characteristics
of the flow statistics and the cases in Numerical Experiment 1 (shown in Table 1). Figure2a
shows the mean horizontal velocity profile for Reτ = 630, Fig. 2b shows the components
of the velocity variance and the vertical momentum flux, and finally Fig. 2c shows the
Lagrangian correlation timescale as a function of the vertical coordinate. We can see that the
DNS reproduces the theoretical laminar sub-layer and log layer scalings, and the velocity
variances and vertical momentum flux are in good agreement with past work on turbulent
open channel flows at similar Reynolds number (Marchioli et al. 2008). Furthermore, the
Lagrangian correlation timescale tends to take on a nearly constant value over the laminar
sub-layer, and begins to increase as a function of the vertical coordinate for roughly z+ > 100.

Figure3a–c show the DNS-computed settling velocity (dashed curves), the sum of the
average sampled velocities and the Stokes settling velocity (solid curves) and the sum of
the diffusive flux and turbophoretic terms (dot-dashed curves) for St+ = 0.1, 10 and 100
respectively and for all three values of Sv+ for each. The third term on the right hand side of
(15) has been omitted as it is known to be negligible. First, we will focus on the cases with
St+ = 10, Fig. 3b, as it clearly shows the role of each settling mechanism. We can identify
that the overall settling enhancement relative to the Stokes settling velocity decreases as

Fig. 2 Panel a shows the mean horizontal velocity profile computed from the DNS overlaid with the theo-
retical viscous sub-layer and log layer profiles. Panel b shows the components of velocity variance and the
vertical momentum flux normalized by u2τ . Panel c shows the Lagrangian correlation timescale, equation (23)
highlighting its increasing nature in the log layer
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Sv+ is increased. Within the interior of the domain, (about 100 < z+ < 500) the grouped
diffusive flux and the turbophoretic drift terms are negligible for all cases except the case with
the lowest Sv+, which begins to increase with height implying an upward tendency, though
it is weak. Though these terms are implicitly dependent on the particle velocities (and thus
Sv+), they are explicitly dependent on St+, so by increasing Sv+, the relative contribution
in the boundary layer decreases. Therefore, we can see that the decreased turbulent settling
velocity must come from the reduction in the difference between the sampled velocities and
the Stokes settling velocities as Sv+ is increased.

For St+ = 0.1, Fig. 3a, the settling velocity in the interior is well approximated by the
sum of the Stokes settling velocity and the average velocity sampled by the particles, as this
was the dominant balance at low Stokes number, pointed out by Bragg et al. (2021a) since all
other terms in (15) are proportional to St+. By comparison, adequate representation of the
average settling velocity for St+ = 100, Fig. 3c, requires the inclusion of all terms in (15)
(aside from the term including 〈wp〉2). Thus, to fully model the settling velocity at St+ = 100
at the current Reτ , a separate model of the diffusive flux and the turbophoretic drift term (or
equivalently of the turbophoresis and the particle fluctuating covariance tensor) is required.
Since the goal of this work is to compare models of the sampled velocities (〈u p〉z), we will
not comment on models of these quantities, but refer the reader to Zhang et al. (2023) for a
detailed discussion. These profiles imply that the traditional view of preferential sweeping
from Wang and Maxey (1993) is modified as Sv+ is varied independently from St+, which
is also discussed and highlighted in Good et al. (2014). The modification to the traditional
picture of preferential sweeping for a given St+ due to Sv+ is demonstrated conceptually in
Fig. 4.

As a settling inertial particle approaches an eddy, the particle is preferentially swept to
the downward side of the eddy, meaning that inertial particles will preferentially sample
negative velocities. For a fixed St+, increasing Sv+ implies an increase in the Stokes settling
velocity. This means that in one relaxation timescale, a particle travels a distance (normalized
by wall units) δ ≈ gτ 2puτ /ν. This distance is only approximate because the speed at which
the particle enters a given eddy is actually a function of its history, as it was presumably
accelerated by eddies that it had previously encountered. Thus, for a fixed St+, increasing
Sv+ allows the inertial particle to penetrate deeper into a given eddy before it can relax to the
local flow conditions. Though the exact form of a turbulent eddy is not known, models (Pullin

Fig. 3 Profiles of the averaged settling velocity (dashed curves), the averaged fluid velocity sampled by the
particle (solid curves), and the averaged diffusive flux and turbophoretic drift terms (dot-dashed curves) for
St+ = 0.1, 10, and 100 in panels a–c respectively. Information for the cases shown can be found in Table 1.
Recall that the diffusive flux and the turbophoretic drift terms are grouped together
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Fig. 4 The modification of preferential sweeping due to the variation in Sv+ at constant St+. The top left
corner is a prototypical relationship between the velocity of a turbulent eddy and the radial distance away
from its center. The middle and rightmost panel show a turbulent eddy of size � (outline by the dashed curve),
and the qualitative velocity distribution denoted by red arrows within. The particle (the red circle) follows the
trajectory denoted by the solid curved arrow. For a given low to moderate Stokes number and Sv+, the particle
penetrates a certain distance into the eddy before as it relaxes to the local velocity field. It is then swept to the
downward side of the eddy. If Sv+ is increased (or alternatively g), then the particle penetrates further into
the eddy as it is settling at a higher rate. Therefore, it samples larger inner velocities

and Saffman 1998) point to turbulent eddies having velocity distributions that are inversely
proportional to the distance from the eddy core. Thus, a particle penetrating further into a
turbulent eddy samples higher velocities before it is relaxes to the local fluid velocity. This
means that, on average, particles at a given Stokes number sample higher velocities at higher
Sv+. This picture is true until the St+ is large enough that the particle trajectory becomes
uncorrelated from the fluid motion regardless of δ.

Particle-turbulence interactions in a real turbulent flow are of course much more com-
plex than those in this simple cartoon. Nevertheless, it provides some insights into how the
sampling of the flow by the particles could increase with increasing Sv+ for a given St+. It
cannot be true in general, however, because for Sv+ → ∞ the particles settle ballistically
through the eddies and there is no preferential sweeping.

4.2 Modeling the Fluid Velocity Sampled by the Particle

In the following sections, we use a combination of the DNS data and the model in (22)
to estimate the magnitudes of the terms in (16) as well as their behaviour with respect to
St+ and Sv+. Recall that the base assumption regarding the applicability of (16) is that
the vertical component of the sampled velocities are normally distributed about their mean
value (Skartlien 2007). In Fig. 5, we use the skewness and kurtosis of the distributions
of sampled velocities to assess their statistical behaviour with height. To compute these
quantities with height, we break the domain into slabs of thickness z+ = 10, and for all
particles within a given slab, we compute the skewness (dashed curves) and kurtosis (solid
curves) of distributions of sampled velocities. We have also denoted the skewness (zero) and

123



Modeling Approaches for Lagrangian Particles Settling in ASL Page 19 of 31    15 

Fig. 5 Profiles of the skewness and kurtosis of sampled velocities in slabs of thickness z+ = 10, for St+ = 0.1
in panel a, St+ = 10 in panel b, and St+ = 100 in panel c. Each curve color corresponds to each value of
Sv+. Dashed black line is zero skewness, and the solid black line is a kurtosis of 3

kurtosis (three) of a normal distribution with the dashed and solid black lines respectively
for comparison.

We can see that for all cases, the kurtosis of the distributions vary significantly near the
upper and lower boundaries, but the actual values depend relatively weakly on St+ and Sv+.
This indicates that the non-Gaussianity of the velocities sampled by the particles ismainly due
to non-Gaussianity of the underlying fluid velocity field, rather than being due to a biased
sampling of the velocity field due to particle inertia. The PDFs (not shown) indicate that
the deviations of the kurtosis from the value for a Gaussian distribution are both due to the
sampled velocities exhibiting an enhanced probability of low and high values relative to those
for a Gaussian PDF, i.e. the PDF of the sampled velocities are more peaked around zero and
have heavier tails than a Gaussian PDF. Nevertheless, within the interior of the domain, the
statistics are close to those of a normal distribution, though they are slightly positively skewed
and are slightly leptokurtic. Furthermore, it is clear that there is variation in the statistics with
height within the interior with increasing St+ and Sv+, but these differences are relatively
small, especially compared to those near the boundaries. Thus, using these plots, we arrive at
the conclusion that within the interior of the domain, say 100 < z+ < 500, the interpretation
that the residual in Eq. (24) represents the drift coefficient is justified. Comparatively, since
the distributions are strongly leptokurtic within several wall units of the lower and upper
boundaries, Eq. (24) cannot be interpreted as a the drift coefficient in these regions.

Next, using the DNS data, we can calculate τL using (23) to determine both the integral
Stokes number, St, as well as the diffusivity, τpλ (i.e. there is no need for the residual in (22)).
These quantities are shown in Fig. 6a and b respectively. We can see that across the interior
of the domain (say in the range 100 < z+ < 500), the range of the integral Stokes number
for a given St+ is less than an order of magnitude. Recall that since τL is only a function of
fluid properties, cases with fixed St+ and different Sv+ will have the same integral Stokes
number. Furthermore, we can see that by increasing St+ by a factor of 10 or 100, we also
increase St at a given height by a factor of 10 or 100.

Note that for small and moderate St+ (0.1 or 10), the integral Stokes number is less than
unity across the entire interior of the domain, suggesting only a weak decoupling of the
particle trajectories from the Lagrangian fluid trajectories there. This correlates with the fact
that the within the interior, distributions of sampled velocities are approximately Gaussian
(see Fig. 5a, b), so we should expect the closure discussed in (16) to be approximately valid
for these cases. For St+ = 100, the integral Stokes number varies from about one near the
midpoint of the domain to five near the viscous sublayer, and this is connected to the stronger
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Fig. 6 Panel a shows the integral Stokes number for St+ = 0.1, 10, and 100 and panel b shows the computed
τpλ for each St+ with Sv+ = 0.1. (dots), and a fourth order polynomial fit to each dataset (thin black line)
and the quadratic diffusivity profile using a log layer scaling from Hoppel (2005) (thick black line)

non-Gaussianity of the sampled velocities for this value of St+. Indeed, even in the context of
isotropic turbulence, the statistical properties of the flow sampled by the particles is a strong
function of the particle inertia, with moderately inertial particles avoiding the most extreme
fluctuations in the flow, while weakly and strongly inertial particles sample the flow more
uniformly (Ireland et al. 2016).

Given our model for τL , we can now use 〈w2〉 to compute τpλ, which can be interpreted
as the diffusivity for the “gradient" based part of the closure. Shown in 6b are values of τpλ

computed by the DNS for all cases at Sv+ = 0.1 in Numerical Experiment 1, and these are
plotted as circular markers. A fourth order polynomial fit in the region 40 < z+ < 600 is
overlaid on the data. This interval was chosen to avoid non-physical boundary effects. Recall
that since λ is only a function of fluid properties (τL and 〈w2〉), as well as the relaxation
timescale (τp), changes in Sv+ due to changes in g will not change the profile of λ.

The choice to use a fourth order model is arbitrary, but qualitatively speaking, other
common forms of the scalar and momentum diffusivities in phenomenological closures often
take similar even order polynomial forms. For example, for a neutrally stratified turbulent
boundary layerwith a logarithmicmean velocity profile, a quadraticmodel for themomentum
diffusivity can be easily derived to be Kq(z) = κuτ z

(
1 − z

H

)
(Fischer 1973; Hoppel 2005).

This profile is plotted on Fig. 6b as a thick black curve. Furthermore, for an unstable planetary
boundary layer, scalar diffusivities are often represented by polynomials of fractional order in
the vertical coordinate (Holtslag and Moeng 1991; Wyngaard and Brost 1984), and a similar
approach was taken by Nissanka et al. (2018) who used a blend of linear and cubic scalar
diffusivity profiles to model particle dispersion within the marine atmospheric boundary
layer. Often, for the bottom 100m of the ABL, it is common to take a diffusivity which is
linear in height (see Kantha and Clayson 2000 for example).

We can see fromFig. 6b that τpλ for St+ = 0.1 approaches the diffusivity profile predicted
by a quadratic log layer scaling discussed above. This is a consequence of the particles acting
as passive scalars in the low St+ limit. It is known in that in this limit, the drift coefficient
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Fig. 7 A comparison of the magnitude of terms that make up the drift coefficient. Profiles of τpγ /vg are

presented in panels a–c and profiles of
τp
vg

∂λ
∂z are presented in panels d–f, and their sums are presented in

panels g–i. Each curve within a panel corresponds to a different Sv+, while each column corresponds to a
different St+

takes the form:

γ = −∂λ

∂z
, (34)

thus (16) only contains the gradient diffusion term. This is known as the passive scalar
approximation (Bragg et al. 2012b). Further increasing St+ to 10 or 100, we decrease the
diffusivity relative to the theoretical functional form. According to (17) (the definition of λ),
this must come from the fact that the vertical displacements of the particles associated with
the sampled velocities become smaller.

Using the estimate for τpλ from Fig. 6b, the known number concentration 
, and averaged
sampled velocities 〈u p〉z from the DNS, we can estimate the residual from Eq. (24) to help us
to understand what γ ought to be for Eq. (16) to adequately represent the sampled velocities.

123



   15 Page 22 of 31 A. P. Grace et al.

Fig. 8 Profiles of the drift component of (20) are presented in panelsa–c and profiles of the diffusive component
of (20) are presented in panels d–f. Each curve within a panel corresponds to a different Sv+, while each
column corresponds to a different St+. Data smoothing has been applied to the concentration profiles to in
order to smooth the derivatives

Furthermore, we can compare this to ∂λ
∂z to identify the dominant contribution to the drift

term. These quantities are plotted in Fig. 7.
By virtue of the the fact that τL is a fluid property, the definition of λwe use in this work is

not a function of Sv+. Thus, dependence on Sv+ should be encapsulated within the residual
in (24), γ . Profiles of τpγ /vg for each St+ are shown in Fig. 7a–c, while profiles of τp

vg

∂λ
∂z

are shown in Fig. 7d–f, and profiles of their sums are shown in Fig. 7g–i. We can see that
for St+ = 0.1, the terms in the drift component nearly cancel eachother out (in Fig. 7a, d),
leading to relatively small changes to the Stokes settling velocity in Fig. 7g. These results are
consistent with the passive scalar approximation discussed earlier (equation (34)), which is
appropriate in the limit St → 0. By increasing St+ to 10 in Fig. 7b, e, and h, the dependence
of τpγ on Sv+ within the interior is much stronger. The result is that the enhancement of
the Stokes settling velocity due to the drift is increased by 200-400% for Sv+ = 0.025 and
roughly 100% for Sv+ = 0.25, shown in Fig. 7h. This means that to adequately model
enhanced settling, inclusion of the drift coefficient γ as well as its dependence on Sv+ in
a model is imperative, especially for moderate Stokes number. Lastly, we can see that the
behaviour of the γ profiles becomes more complex for St+ = 100, shown in Fig. 7c, f, and
i. Specifically, we can see that in the range z+ < 200, where we know that the kurtosis
of the distributions are close to three (see Fig. 5c), the total drift coefficient is actually
negative, indicating that in this region, the effective Stokes settling velocity (i.e. the total
drift contribution on the right hand side of (21) associated with γ and λ) is actually reduced,
and this effect tends to decrease with increasing Sv+.

Next, with detailed information about λ and γ in hand, we plot the components of the total
flux that are due only to the sampled velocities and the Stokes settling velocity, i.e. Equation
(21) but only including to terms highlighted by the under braces. The drift components
are shown in Fig. 8a–c and the diffusion components are shown in Fig. 8d–f. Each column
corresponds to a value of St+ while each curve corresponds to a specific value of Sv+.
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The primary finding here is that the drift contribution implied by the DNS is in fact up
to an order of magnitude more important than the diffusion component (ignoring the terms
including S in (21)) for moderate St+ and high Sv+, shown in Fig. 8b and e, and this must
come from the enhancement by preferential sweeping. This difference decreases as Sv+ is
decreased since the diffusion component tends to increase inmagnitude overall, probably due
to the crossing trajectory effect, while the drift coefficient decreases in magnitude overall. It
is sensible for the drift coefficient to decrease in magnitude in the limit of Sv+ → 0 since
in this limit, there is no net downward flux and on average particles begin to sample upward
motions as frequently as downward motions within the interior. On the other hand, for both
high and low St+, the drift component and the diffusion components are at least comparable
in magnitude within the interior of the domain.

Roughly speaking, we can see that as the Stokes number increases, the magnitude of the
diffusive profiles within the interior for all Sv+ increases by a factor of 3 to 10 (depending
on Sv+) between St+ = 0.1 and 10, while the differences between the diffusive profiles for
St+ = 10 and St+ = 100 are not nearly as large. On the other hand, the overall magnitude
of the drift coefficient reaches a peak at the moderate Stokes number. It is interesting to note
that in Fig. 8d, the diffusion for the Sv+ = 0.025 case actually has the lowest magnitude and
the lowest drift, implying that the averaged sampled velocities begin to approach zero in the
passive scalar limit.

These results indicate that an understanding of the parametric behaviour of the drift cor-
rection is imperative for adequate representation of the fluid velocities sampled by the particle
in the log layer for low and moderate Stokes number. These are important observations since
for phenomenological modeling efforts, the entirety of the turbulent flux is assumed to be
encoded in an eddy diffusivity closure, but it is clear that in the moderate St+ limit, the
majority of the settling velocity enhancement actually comes from the drift component, and
the magnitude and structure of the drift strongly depends on both St+ and Sv+. We discuss
these implications next.

4.3 Deposition Velocity According to the Phenomenological Approach

Prior to the usage of the closure for the sampled vertical fluid velocities in (16), the phase-
space approach outlined in Sect 3.2 is exact, in the sense that it introduces no additional
assumptions about either the particle or fluid dynamics aside from those already in the equa-
tions of motion themselves (Bragg et al. 2021a). However, it is very general and identifying
opportunities for modeling simplification can be quite challenging for weather and dispersion
applications. Therefore, it is useful to discuss the results from the DNS data in terms of a
phenomenological model which is similar to an approach used ubiquitously throughout the
atmospheric deposition literature. As a reminder, the phenomenological model interprets all
turbulent transport as purely diffusive, and ignores any potential drift component.

In this section, our goal is to compare the DNS data from the cases highlighted in Table
2 (Numerical Experiment 2) with the phenomenological model presented in Eq. (33). First,
Fig. 9a shows the settling velocity enhancement for Numerical Experiment 1 (� is varied)
as filled markers, and the settling velocity enhancement of Numerical Experiment 2 (two
values of constant �) as asterisk markers, all evaluated at a height of z+ = 180. The com-
mon behaviour is that there is a maximum in the settling enhancement somewhere in the
neighborhood of St+ = 10 (St in the range of 0.1 to 1 according to Fig. 6) for all cases,
which qualitatively agrees with past studies on the settling velocity enhancement of inertial
particles (Wang andMaxey 1993; Rosa et al. 2016). However, for cases at constant� (Numer-
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Fig. 9 The settling velocity enhancement plotted against St+ at z+ = 180, panel a, and the normalized
resistance computed from the DNS plotted against St+ at z+ = 180, panel b. Data from cases in Table 1 are
plotted as filled markers. Data from cases in table 2 are plotted as stars. The resistance model from Zhang
(2001) with α = 50 and β = 1.7 is included on panel b

ical Experiment 2; asterisks), the enhancement is sustained at very low St+, suggesting that
the velocities sampled by the particles tend to become more important in determining the
enhancement at such low Sv+. It has been shown previously in a turbulent channel flow that
for Sv+ in the neighborhood of 10−3 or 10−4, that the magnitude of Sv+ does not play a
significant role in the dynamics of the particles outside a very small region near the bottom
boundary (Bragg et al. 2021b), so the dominant effect leading to settling enhancement is
the preferential sweeping by turbulent eddies. In these cases, distributions of the sampled
velocities tend to converge around the same value when normalized by the Stokes settling
velocity (not shown).

Figure9b shows the resistance, R, back calculated using (33) assuming that vd = 〈wp〉z
for all cases in numerical experiments 1 and 2 as well as the theoretical curve from Zhang
(2001) using α = 50 and β = 1.7. We can see that as � becomes smaller (denoted by cases
marked with asterisks), the data begins to approach this empirical curve in the low St+ range,
whereas when � becomes large (denoted by cases marked with solid markers), it is clear that
the data diverges from empirical curve in this same range. Different models for the inertial
resistance such as those from Slinn and Slinn (1980), Giorgi (1986), Zhang (2001), Emerson
et al. (2020) will change the slope of this curve in the low St+ range, but as far as we are
aware, none of these models attempt to define the variation in slope as a function of �, even
though we have demonstrated that it matters. Furthermore, as the Stokes number increases,
the data points tend to group together and approach the asymptotic aerodynamic resistance
component. In the model from Hoppel (2005), this corresponds to the resistance acquiring a
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constant value, leading to negligible velocity enhancement as St+ increases, which our DNS
qualitatively agrees with.

An important point to mention is that the empirically determined constants which charac-
terize the aerodynamic resistance (α and β) were calibrated to datameasured under Earth-like
conditions. Thus, the resistance parameterization is expected to accurately model conditions
which are relevant to that environment. For example, under normal neutral atmospheric
boundary layer conditions on earth, we expect uτ to take values in the neighborhood of 10
cm/s to 1m/s (see Vickers et al. 2015 for example), and since g and ν are roughly constant,�
takes on values between 10−4 and 10−1. This observation may explain why when � is close
to this estimated range, the data tends to approach the empirical curve, while for � out of this
range, the data appears to diverge from this relationship. This observation also means that we
should not necessarily expect the empirical curve to match the DNS data quantitatively for
the experiments in Table 1, or more generally, environments where � significantly diverges
from the geophysically relevant range. Consequently, by over-estimating the resistance, uτ R,
we under-estimate the overall deposition velocity for low and moderate Stokes number.

Furthermore, if we interpret impact of the turbulence on the vertical transport as having
a drift component in addition to the a diffusion component, as we have in Sect. 4.2, then the
empirically determined constants could be inadvertently compensating for a mechanism that
is specifically ignored in the phenomenological interpretation. In an effort to demonstrate the
effect of ignoring the drift component in the phenomenological interpretation, we have com-
pared the re-scaled cases from Numerical Experiment 2 (shown in Table 2) to the theoretical
deposition velocity after solving (33), shown in Fig. 10. To re-scale these cases, we found an
equivalent friction velocity implied by our choice of � (indicated on each panel if Fig. 10)
and Earth’s gravity, and then computed the resulting deposition velocity predicted by (33).
On these plots, we have plotted the Stokes settling velocity as a function of particle radius
(the dotted lines), the deposition velocity in Eq. (29) using the resistance from Zhang (2001)
with α = 50 and β = 1.7 (blue dashed lines), as well as a modified resistance where we
have arbitrarily adjusted β to be 1.3 (red dashed curves). It is clear that the deposition model
in Eq. (29), while practically useful, is quite sensitive to the empirical parameters α and β,
and consequently, does not match the DNS data for all particle sizes, and we argue that this
is due to the interpretation that the turbulent flux ignores any drift and is purely diffusive.

Furthermore, we can see that under the Zhang (2001) resistance model, the maximally
enhanced particles at St+ = 10 (and effective radius of rp ≈ 2 − 3 µm for our DNS) is
also under-estimated, but for different reason than discussed above. According to the primary
assumption that the resistances are added together, it is clear that their minimum value is the
aerodynamic resistance Ra . However, for large � and St+ = 10, the computed resistance
is actually smaller than Ra , meaning that the enhanced settling velocity will always be
under-estimated for moderate St+ regardless of the choice of α and β. This means that the
resistance-based parameterization in its current form is inadequate to describe deposition
of particles with moderate St+ and large �. A potential approach, but beyond the scope of
the current work, would be to ascribe some Stokes number dependence on the aerodynamic
drag, which in principle makes sense, as these particles may be more efficient at extracting
momentum from the background turbulent flow.

Though it is beyond the scope of the current work, one could use the insight from the
phase-space modeling to make modifications to (26) that may help to reconcile the results
of the DNS and phenomenological model. As predicted by (21), the drift coefficient has
the effect of enhancing the settling velocity for moderately sized particles. Thus the drift
correction should have the effect of modifying the slope of the deposition curve where the
settling is enhanced. As we see in Fig. 10a, increasing the slope of the deposition curve (red
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Fig. 10 Data from Table 2 re-dimensionalized and plotted as black markers to match with standard deposition
curves fromHoppel (2005). The Stokes settling velocity as a function of particle radius is plotted by the dotted
line. The parameterization presented in Zhang (2001) using β = 1.7 and α = 50 (corresponding to a desert
or tundra setting) is plotted by the blue dashed line. A similar parameterization with β = 1.3 and α = 50
is shown by the red dashed curve. Panel a shows the case with � = 0.001 and panel b shows the case with
� = 0.0025m andwe have inlcuded the effective friction velocity implied by each value of� assuming Earth’s
gravity

dashed lines) qualitatively improves the agreement with theDNS, and aswe see in Fig. 10b, at
increased� (meaningweaker turbulence), we should expect the enhancement to beweaker. A
similar approach was taken by Giardina et al. (2019), but the correction to the Stokes settling
velocity was ad hoc, and approached the limit of vg + uτ at large St+, which according to
Fig. 3b is not true. Thus, in order to improve the predictions by the phenomenological model,
a more accurate correction to the Stokes settling velocity is necessary. Furthermore, in the
case of negligible gradients of mean properties ( ∂C

∂z ), such as for homogeneous isotropic
turbulence, we should expect the Stokes settling velocity correction to be able to reproduce
the enhanced settling velocity seen in studies such as Wang and Maxey (1993), Rosa et al.
(2016).

5 Discussion and Conclusions

In this work, we have coupled settling inertial Lagrangian point particles to direct numerical
simulations of a turbulent boundary layer. Our goals were to identify how the independent
variations in Sv+ and St+ modified the preferential sweeping mechanism and to use that
insight to discuss two fundamentally different approaches to modeling the settling charac-
teristics of the inertial particles. The first approach was based on the phase-space probability
density of the ensemble of particles which allows us derive an exact formulation for the
evolution of the average number concentration and the average particle momentum, while
the second approach was a combination of a mass-conservation argument and a resistance
based approach analogous to deposition models in current operational use.

First, we found that variation in Sv+ modified the fluid velocities sampled by the particles,
thus modifying the role that preferential sweeping plays in determining the settling velocity
of the inertial particles. We hypothesize that particles with a given low or moderate St+
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but a larger Sv+ sample velocities closer to the cores of turbulent eddies leading to higher
sampled downward velocities within the interior of the domain. However, if Sv+ becomes too
large, theywould simplymove vertically through the turbulent eddies. Furthermore, when the
particles attain a large enough St+ for any Sv+, they become ballistic and uncorrelated with
the flow velocities. At this point, the velocities sampled by the particles show a negligible
variation due to changes in Sv+.

We also showed that the fluid velocities sampled by the particles were approximately
normally distributed in the log-layer. For the phase-space approach, this allowedus to interpret
the average fluid velocity sampled by the particles using a closure from Reeks (1992) that
involves a drift component proportional to the local concentration as well as a diffusion based
closure proportional to the gradient of the concentration. By focusing on the dynamics within
the logarithmic region of the turbulent boundary layer, we were able to use both the DNS
data and an assumption that the turbulence is approximately locally homogeneous which
allowed us to constrain the diffusive and drift components of the closure. We found that
the drift component was nearly an order of magnitude larger than the diffusion closure for
moderate St+ (when preferential sweeping is expected to be active), while both components
were comparable in magnitude for the largest and smallest values of St+. Furthermore, the
drift coefficient captured the variations in the average settling velocities due to variations
in Sv+, thus capturing the modified preferential sweeping discussed in Fig. 4, whereas the
diffusion component did not.We emphasize here that the magnitude of the drift component is
nearly ten times that of the diffusion component for moderate Stokes numbers, highlighting
the importance of average particle drift.

Given the insight provided in Sect. 4.2, we considered the eddy-diffusivity assumption
(which ignores the drift component a priori) made in the phenomenological model of Hoppel
(2005). We investigated how the deposition velocity predicted by the phenomenological
approach compared to the results of the DNS. In the phenomenological model, the turbulent
transport is purely diffusive and is further parameterized in terms of the aerodynamic drag
(Slinn and Slinn 1980) and an empirical correction to the drag as a function of St+ (Zhang
2001). We found that this approach represented the enhanced vertical settling velocity from
the DNS in only a qualitative sense, but consistently underestimated the turbulent settling
velocity, or deposition velocity, relative to the DNS.We argued that representing the turbulent
transport as a purely diffusive process and ignoring net drift leads to an incorrect interpretation
of the effects of the turbulence. From the insight gained in Sect. 4.2, we hypothesized that the
empirical coefficients used to correct the for effects of the turbulence may in fact be trying to
compensate for the drift. Therefore, in order to put the phenomenological model on stronger
theoretical and physical footing, some form of drift should be included in its formulation.

It is important to note that since we are concerned with a DNS study, the Reynolds number
is fairly low, thus potentially misrepresenting the settling tendencies of the largest particles.
This is evident for the largest effective radii particles where the phenomenological model
predicts settling velocity enhancement for 10 µm particles, while the DNS does not. This
may be because the phenomenological parameterization implicitly assumes a large Reynolds
number and therefore a large range of scales, including motions such as VLSMs (Smits et al.
2011). These scales, which could be responsible for enhancing the settling speed of these
large particles (Tom and Bragg 2019), are absent from our DNS due to the relatively small
Reynolds number.

It should also be noted that models that attempt to represent particle deposition used in
mesoscale and climate modeling are even simpler than the phenomenological model dis-
cussed above. For example, see Kukkonen et al. (2012) for a comprehensive review of
deposition models in operational use for regional forecasting models in Europe. Some exam-
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ples of the deposition models in current use are a simple application of Stokes law, slightly
more complex resistance based models (Giardina and Buffa 2018; Emerson et al. 2020), and
simple gas-transfer deposition models based on Slinn and Slinn (1980). So in some sense,
the phenomenological model we have considered in this paper adheres to physics in a way
that operational models do not, as none of the previous models attempt to conserve aerosol
mass in any way and rely on empirical corrections to match existing data.

However, these models are in common use because of their simplicity. While phase-space
approach discussed in Sect. 4.2 is exact and extremely explicit in the way that it describes
the role of each individual mechanism, it is complex in a way that is likely off-putting for
many applied scientists. Thus, an attainable goal for the results in this work would be to
use the complex phase-space models to inform and approximate simpler resistance-based
models for eventual operational use. With an adequate model for γ in a turbulent boundary
layer, which itself is beyond the scope of the current work, a drift correction to the Stokes
settling velocity could be easily implemented in a modified phenomenological model. This
represents a relatively simple but more accurate approximation that could be implemented
in operational models.

Acknowledgements The authors would like to acknowledgeGrant No.W911NF2220222 from theU.S. Army
Research Office. The authors would also like to thank the Center for Research Computing at the University
of Notre Dame, as well Tim Berk, and the two anonymous reviewers whose suggestions led to substantial
improvements to the paper.

Declarations

Conflict of interest The authors report no conflict of interest

References

Aliseda A, Cartellier A, Hainaux F, Lasheras JC (2002) Effect of preferential concentration on the settling
velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 468:77–105. https://doi.
org/10.1017/S0022112002001593

Berk T, Coletti F (2020) Transport of inertial particles in high-Reynolds-number turbulent boundary layers. J
Fluid Mech 903:A18. https://doi.org/10.1017/jfm.2020.597

Berk T, Coletti F (2021) Dynamics of small heavy particles in homogeneous turbulence: a Lagrangian exper-
imental study. J Fluid Mech 917:A47. https://doi.org/10.1017/jfm.2021.280

Boudreau BP, Hill PS (2020) Rouse revisited: the bottom boundary condition for suspended sediment profiles.
Mar Geol 419(106):066. https://doi.org/10.1016/j.margeo.2019.106066

Bragg A, Swailes DC, Skartlien R (2012) Drift-free kinetic equations for turbulent dispersion. Phys Rev E
86(5):056306. https://doi.org/10.1103/PhysRevE.86.056306

BraggA, SwailesDC, SkartlienR (2012) Particle transport in a turbulent boundary layer: non-local closures for
particle dispersion tensors accounting for particle-wall interactions. Phys Fluids 24(10):103304. https://
doi.org/10.1063/1.4757657

Bragg AD, Richter DH,Wang G (2021) Mechanisms governing the settling velocities and spatial distributions
of inertial particles in wall-bounded turbulence. Phys Rev Fluids 6(6):064302. https://doi.org/10.1103/
PhysRevFluids.6.064302

Bragg AD, Richter DH, Wang G (2021) Settling strongly modifies particle concentrations in wall-bounded
turbulent flows even when the settling parameter is asymptotically small. Phys Rev Fluids 6(12):124301.
https://doi.org/10.1103/PhysRevFluids.6.124301

Brandt L, Coletti F (2022) Particle-laden turbulence: progress and perspectives. Annu Rev Fluid Mech
54(1):159–189. https://doi.org/10.1146/annurev-fluid-030121-021103

Csanady GT (1963) Turbulent diffusion of heavy particles in the atmosphere. J Atmos Sci 20(3):201–208.
https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2

123

https://doi.org/10.1017/S0022112002001593
https://doi.org/10.1017/S0022112002001593
https://doi.org/10.1017/jfm.2020.597
https://doi.org/10.1017/jfm.2021.280
https://doi.org/10.1016/j.margeo.2019.106066
https://doi.org/10.1103/PhysRevE.86.056306
https://doi.org/10.1063/1.4757657
https://doi.org/10.1063/1.4757657
https://doi.org/10.1103/PhysRevFluids.6.064302
https://doi.org/10.1103/PhysRevFluids.6.064302
https://doi.org/10.1103/PhysRevFluids.6.124301
https://doi.org/10.1146/annurev-fluid-030121-021103
https://doi.org/10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2


Modeling Approaches for Lagrangian Particles Settling in ASL Page 29 of 31    15 

Emerson EW, Hodshire AL, DeBolt HM, Bilsback KR, Pierce JR, McMeeking GR, Farmer DK (2020)
Revisiting particle dry deposition and its role in radiative effect estimates. Proc Natl Acad Sci
117(42):26076–26082. https://doi.org/10.1073/pnas.2014761117

Farmer DK, Boedicker EK, DeBolt HM (2021) Dry deposition of atmospheric aerosols: approaches, obser-
vations, and mechanisms. Annu Rev Phys Chem 72(1):375–397. https://doi.org/10.1146/annurev-
physchem-090519-034936

Fischer HB (1973) Longitudinal dispersion and turbulent mixing in open-channel flow. Annu Rev Fluid Mech
5(1):59–78. https://doi.org/10.1146/annurev.fl.05.010173.000423

Freire LS, Chamecki M, Gillies JA (2016) Flux-profile relationship for dust concentration in the stratified
atmospheric surface layer. Bound-LayerMeteorol 160(2):249–267. https://doi.org/10.1007/s10546-016-
0140-2

GaoW, Samtaney R, Richter DH (2023) Direct numerical simulation of particle-laden flow in an open channel
at. J Fluid Mech 957:A3. https://doi.org/10.1017/jfm.2023.26

Giardina M, Buffa P (2018) A new approach for modeling dry deposition velocity of particles. Atmos Environ
180:11–22. https://doi.org/10.1016/j.atmosenv.2018.02.038

Giardina M, Donateo A, Buffa P, Contini D, Cervone A, Lombardo C, Rocchi F (2019) Atmospheric dry
deposition processes of particles on urban and suburban surfaces: modelling and validation works. Atmos
Environ 214(116):857. https://doi.org/10.1016/j.atmosenv.2019.116857

Giorgi F (1986)Aparticle dry-deposition parameterization scheme for use in tracer transportmodels. JGeophys
Res 91(D9):9794. https://doi.org/10.1029/JD091iD09p09794

Good G, Ireland P, Bewley G, Bodenschatz E, Collins L,Warhaft Z (2014) Settling regimes of inertial particles
in isotropic turbulence. J Fluid Mech 759:R3. https://doi.org/10.1017/jfm.2014.602

HoltslagAAM,MoengCH (1991)Eddydiffusivity and countergradient transport in the convective atmospheric
boundary layer. J Atmos Sci 48(14):1690–1698. https://doi.org/10.1175/1520-0469(1991)048<1690:
EDACTI>2.0.CO;2

HoppelWA (2002) Surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface.
J Geophys Res 107(D19):4382. https://doi.org/10.1029/2001JD002014

Hoppel WA (2005) Particle deposition on water: surface source versus upwind source. J Geophys Res
110(D10):D10206. https://doi.org/10.1029/2004JD005148

Ireland PJ, Bragg AD, Collins LR (2016) The effect of Reynolds number on inertial particle dynamics in
isotropic turbulence. Part 2. Simulations with gravitational effects. J Fluid Mech 796:659–711. https://
doi.org/10.1017/jfm.2016.227

Jenkins GS, McCauley K, Thompson T, Diokhane A (2022) WRF-CHEM simulations of unhealthy PM10
concentrations during Four Dust Events in Senegal. J Geophys Res Atmos 127:e2022JD037068

Kantha LH, Clayson CA (2000) Small scale processes in geophysical fluid flows. Elsevier, Amsterdam
Kind R (1992) One-dimensional aeolian suspension above beds of loose particles-A new concentration-profile

equation. Atmos Environ A Gen Top 26(5):927–931. https://doi.org/10.1016/0960-1686(92)90250-O
Kok JF, Parteli EJR, Michaels TI, Karam DB (2012) The physics of wind-blown sand and dust. Reports Prog

Phys 75(10):106901. https://doi.org/10.1088/0034-4885/75/10/106901
Kok JF, Ridley DA, Zhou Q, Miller RL, Zhao C, Heald CL, Ward DS, Albani S, Haustein K (2017) Smaller

desert dust cooling effect estimated from analysis of dust size and abundance. Nat Geosci 10(4):274–278.
https://doi.org/10.1038/ngeo2912

Kukkonen J, Olsson T, Schultz DM, Baklanov A, Klein T, Miranda AI, Monteiro A, Hirtl M, Tarvainen V, Boy
M, Peuch VH, Poupkou A, Kioutsioukis I, Finardi S, Sofiev M, Sokhi R, Lehtinen KEJ, Karatzas K, San
José R, Astitha M, Kallos G, Schaap M, Reimer E, Jakobs H, Eben K (2012) A review of operational,
regional-scale, chemical weather forecasting models in Europe. Atmos Chem Phys 12(1):1–87. https://
doi.org/10.5194/acp-12-1-2012

Kunkel GJ, Marusic I (2006) Study of the near-wall-turbulent region of the high-Reynolds-number boundary
layer using an atmospheric flow. J Fluid Mech 548(1):375. https://doi.org/10.1017/S0022112005007780

Li C, Lim K, Berk T, AbrahamA, Heisel M, Guala M, Coletti F, Hong J (2021) Settling and clustering of snow
particles in atmospheric turbulence. J Fluid Mech 912:A49. https://doi.org/10.1017/jfm.2020.1153

Marchioli C, Soldati A, Kuerten J, Arcen B, Tanière A, Goldensoph G, Squires K, Cargnelutti M, Portela
L (2008) Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence:
Results of an international collaborative benchmark test. Int J Multiph Flow 34(9):879–893. https://doi.
org/10.1016/j.ijmultiphaseflow.2008.01.009

Marusic I, Uddin AKM, Perry AE (1997) Similarity law for the streamwise turbulence intensity in zero-
pressure-gradient turbulent boundary layers. Phys Fluids 9(12):3718–3726. https://doi.org/10.1063/1.
869509

Maxey MR (1987) The gravitational settling of aerosol particles in homogeneous turbulence and random flow
fields. J Fluid Mech 174:441–465. https://doi.org/10.1017/S0022112087000193

123

https://doi.org/10.1073/pnas.2014761117
https://doi.org/10.1146/annurev-physchem-090519-034936
https://doi.org/10.1146/annurev-physchem-090519-034936
https://doi.org/10.1146/annurev.fl.05.010173.000423
https://doi.org/10.1007/s10546-016-0140-2
https://doi.org/10.1007/s10546-016-0140-2
https://doi.org/10.1017/jfm.2023.26
https://doi.org/10.1016/j.atmosenv.2018.02.038
https://doi.org/10.1016/j.atmosenv.2019.116857
https://doi.org/10.1029/JD091iD09p09794
https://doi.org/10.1017/jfm.2014.602
https://doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1991)048<1690:EDACTI>2.0.CO;2
https://doi.org/10.1029/2001JD002014
https://doi.org/10.1029/2004JD005148
https://doi.org/10.1017/jfm.2016.227
https://doi.org/10.1017/jfm.2016.227
https://doi.org/10.1016/0960-1686(92)90250-O
https://doi.org/10.1088/0034-4885/75/10/106901
https://doi.org/10.1038/ngeo2912
https://doi.org/10.5194/acp-12-1-2012
https://doi.org/10.5194/acp-12-1-2012
https://doi.org/10.1017/S0022112005007780
https://doi.org/10.1017/jfm.2020.1153
https://doi.org/10.1016/j.ijmultiphaseflow.2008.01.009
https://doi.org/10.1016/j.ijmultiphaseflow.2008.01.009
https://doi.org/10.1063/1.869509
https://doi.org/10.1063/1.869509
https://doi.org/10.1017/S0022112087000193


   15 Page 30 of 31 A. P. Grace et al.

Miller RL, Cakmur RV, Perlwitz J, Geogdzhayev IV, Ginoux P, Koch D, Kohfeld KE, Prigent C, Ruedy R,
Schmidt GA, Tegen I (2006) Mineral dust aerosols in the NASA Goddard Institute for Space Sciences
ModelE atmospheric general circulation model. J Geophys Res 111(D6):D06208. https://doi.org/10.
1029/2005JD005796

NemesA,Dasari T,Hong J,GualaM,Coletti F (2017) Snowflakes in the atmospheric surface layer: observation
of particle-turbulence dynamics. J Fluid Mech 814:592–613. https://doi.org/10.1017/jfm.2017.13

Nissanka ID, Park HJ, Freire LS, Chamecki M, Reid JS, Richter DH (2018) Parameterized vertical con-
centration profiles for aerosols in the marine atmospheric boundary layer. J Geophys Res Atmos
123(17):9688–9702. https://doi.org/10.1029/2018JD028820

Oesterlé B, Zaichik LI (2004) On Lagrangian time scales and particle dispersion modeling in equilibrium
turbulent shear flows. Phys Fluids 16(9):3374–3384. https://doi.org/10.1063/1.1773844

Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge
Prandtl L (1952) Essentials of fluid dynamics: with applications to hydraulics aeronautics, meteorology, and

other subjects. Hafner Publishing Company, New York
Pullin DI, Saffman PG (1998) VORTEX DYNAMICS IN TURBULENCE. Annu Rev Fluid Mech 30(1):31–

51. https://doi.org/10.1146/annurev.fluid.30.1.31
QuerolX, TobíasA, PérezN,KaranasiouA,Amato F, StafoggiaM, PérezGarcía-PandoC,GinouxP, Forastiere

F, Gumy S, Mudu P, Alastuey A (2019) Monitoring the impact of desert dust outbreaks for air quality
for health studies. Environ Int 130(104):867. https://doi.org/10.1016/j.envint.2019.05.061

Reeks MW (1991) On a kinetic equation for the transport of particles in turbulent flows. Phys Fluids A
3(3):446–456. https://doi.org/10.1063/1.858101

Reeks MW (1992) On the continuum equations for dispersed particles in nonuniform flows. Phys Fluids A
4(6):1290–1303. https://doi.org/10.1063/1.858247

Reeks MW (2021) The Development and Application of a Kinetic Theory for Modeling Dispersed Particle
Flows. J Fluids Eng 143(8):080803. https://doi.org/10.1115/1.4051289

Richter D, Chamecki M (2018) Inertial effects on the vertical transport of suspended particles in a turbulent
boundary layer. Bound-Layer Meteorol 167(2):235–256. https://doi.org/10.1007/s10546-017-0325-3

Rosa B, Parishani H, Ayala O, Wang LP (2016) Settling velocity of small inertial particles in homogeneous
isotropic turbulence from high-resolution DNS. Int J Multiph Flow 83:217–231. https://doi.org/10.1016/
j.ijmultiphaseflow.2016.04.005

Rouse H (1937)Modern conceptions of the mechanics of fluid turbulence. Trans Am Soc Civ Eng 102(1):463–
505

Ryder CL, Marenco F, Brooke JK, Estelles V, Cotton R, Formenti P, McQuaid JB, Price HC, Liu D, Ausset P,
Rosenberg PD, Taylor JW, Choularton T, Bower K, Coe H, Gallagher M, Crosier J, Lloyd G, Highwood
EJ, Murray BJ (2018) Coarse-mode mineral dust size distributions, composition and optical properties
from AER-D aircraft measurements over the tropical eastern Atlantic. Atmos Chem Phys 18(23):17225–
17257. https://doi.org/10.5194/acp-18-17225-2018

Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change, 1st
edn. John Wiley and Sons, New York

Shao Y (2008) Dust transport and deposition. Physics and modelling of wind erosion. Springer, Dordrecht,
pp 247–301

Sikovsky DP (2019) Particle Reynolds stress model for wall turbulence with inertial particle clustering. J Phys
Confer Ser 1382(1):012099. https://doi.org/10.1088/1742-6596/1382/1/012099

Skartlien R (2007) Kinetic modeling of particles in stratified flow—evaluation of dispersion tensors in inho-
mogeneous turbulence. Int J Multiph Flow 33(9):1006–1022. https://doi.org/10.1016/j.ijmultiphaseflow.
2007.04.001

Slinn S, SlinnW (1980) Predictions for particle deposition on natural waters. Atmos Environ 1967 14(9):1013–
1016. https://doi.org/10.1016/0004-6981(80)90032-3

Slinn W (1967) Predictions for particle deposition to vegetative canopies. Atmos Environ 16(7):1785–1794.
https://doi.org/10.1016/0004-6981(82)90271-2

Smits AJ, McKeon BJ, Marusic I (2011) High-Reynolds number wall turbulence. Annu Rev Fluid Mech
43(1):353–375. https://doi.org/10.1146/annurev-fluid-122109-160753

Tom J, Bragg AD (2019) Multiscale preferential sweeping of particles settling in turbulence. J Fluid Mech
871:244–270. https://doi.org/10.1017/jfm.2019.337

Vickers D, Mahrt L, Andreas EL (2015) Formulation of the sea surface friction velocity in terms of the mean
wind and bulk stability. J Appl Meteorol Climatol 54(3):691–703. https://doi.org/10.1175/JAMC-D-14-
0099.1

WangG, FongKO, Coletti F, Capecelatro J, Richter DH (2019) Inertial particle velocity and distribution in ver-
tical turbulent channel flow: a numerical and experimental comparison. Int JMultiph Flow 120(103):105.
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103105

123

https://doi.org/10.1029/2005JD005796
https://doi.org/10.1029/2005JD005796
https://doi.org/10.1017/jfm.2017.13
https://doi.org/10.1029/2018JD028820
https://doi.org/10.1063/1.1773844
https://doi.org/10.1146/annurev.fluid.30.1.31
https://doi.org/10.1016/j.envint.2019.05.061
https://doi.org/10.1063/1.858101
https://doi.org/10.1063/1.858247
https://doi.org/10.1115/1.4051289
https://doi.org/10.1007/s10546-017-0325-3
https://doi.org/10.1016/j.ijmultiphaseflow.2016.04.005
https://doi.org/10.1016/j.ijmultiphaseflow.2016.04.005
https://doi.org/10.5194/acp-18-17225-2018
https://doi.org/10.1088/1742-6596/1382/1/012099
https://doi.org/10.1016/j.ijmultiphaseflow.2007.04.001
https://doi.org/10.1016/j.ijmultiphaseflow.2007.04.001
https://doi.org/10.1016/0004-6981(80)90032-3
https://doi.org/10.1016/0004-6981(82)90271-2
https://doi.org/10.1146/annurev-fluid-122109-160753
https://doi.org/10.1017/jfm.2019.337
https://doi.org/10.1175/JAMC-D-14-0099.1
https://doi.org/10.1175/JAMC-D-14-0099.1
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103105


Modeling Approaches for Lagrangian Particles Settling in ASL Page 31 of 31    15 

WangLP,MaxeyMR(1993) Settling velocity and concentration distribution of heavy particles in homogeneous
isotropic turbulence. J Fluid Mech 256:27–68. https://doi.org/10.1017/S0022112093002708

Wang LP, Stock DE (1993) Dispersion of heavy particles by turbulent motion. J Atmos Sci 50(13):1897–1913.
https://doi.org/10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2

Wyngaard JC, Brost RA (1984) Top-down and bottom-up diffusion of a scalar in the convective boundary
layer. J Atmos Sci 41(1):102–112. https://doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.
CO;2

Zhang L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos
Environ 35(3):549–560. https://doi.org/10.1016/S1352-2310(00)00326-5

Zhang Y, Bragg AD, Wang G (2023) Asymptotic closure model for inertial particle transport in turbulent
boundary layers. Physical Review Fluids 8(1):014301. https://doi.org/10.1103/PhysRevFluids.8.014301

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1017/S0022112093002708
https://doi.org/10.1175/1520-0469(1993)050<1897:DOHPBT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2
https://doi.org/10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2
https://doi.org/10.1016/S1352-2310(00)00326-5
https://doi.org/10.1103/PhysRevFluids.8.014301

	A Reinterpretation of Phenomenological Modeling Approaches for Lagrangian Particles Settling in a Turbulent Boundary Layer
	Abstract
	1 Introduction
	2 Model Setup
	2.1 Carrier Phase
	2.2 Dispersed Phase
	2.3 Numerical Experimental Setup

	3 Models of Particle Deposition
	3.1 Phase-Space Approach
	3.2 Estimating λ and γ
	3.3 Phenomenological Eddy-Diffusivity Approach 

	4 Results
	4.1 Settling velocity enhancement for Numerical Experiment 1
	4.2 Modeling the Fluid Velocity Sampled by the Particle
	4.3 Deposition Velocity According to the Phenomenological Approach

	5 Discussion and Conclusions
	Acknowledgements
	References


